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Yuma Desert Agriculture

1

 The arid Yuma region in southwestern Arizona is considered 
as the Winter Vegetable Capital of the World that grows 
about 90% of winter vegetables in the U.S.

 Annual gross economic return of about $3.2 billion.
– Longest growing season in the U.S. with mild winters.
– Sediments deposited by Colorado river over millions of years

provide fertile soils.
– Less than 3 inches of precipitation – high quality Colorado River

irrigation water.
– Declining irrigation water resources is a major concern for many intensively 

cultivated arid and semi-arid agricultural systems. 
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Quantification of Crop Water Deficit

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎 𝑚𝑚 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎 𝑟𝑟
𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎 𝑚𝑚 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎 𝑥𝑥

Ts : Surface and air temperatures 
Ta : Air temperatures

Subscripts: m: Minimum; r: Measured; x: Maximum

𝐶𝐶𝐶𝐶𝐷𝐷𝐼𝐼 = 1 − 𝜆𝜆𝐸𝐸Γ
𝜆𝜆𝐸𝐸Γ𝑃𝑃

=
𝛾𝛾 1+𝑟𝑟𝑐𝑐𝑟𝑟𝑎𝑎 −𝛾𝛾∗

∆+𝛾𝛾(1+𝑟𝑟𝑐𝑐𝑟𝑟𝑎𝑎)
𝑟𝑟𝑐𝑐
𝑟𝑟𝑎𝑎

=

𝛾𝛾𝑟𝑟𝑎𝑎𝑅𝑅𝑛𝑛
𝜌𝜌𝑐𝑐𝑝𝑝

− 𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑎𝑎 ∆ + 𝛾𝛾 − (𝑒𝑒𝑎𝑎∗ − 𝑒𝑒𝑎𝑎)

𝛾𝛾 𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑎𝑎 − 𝑟𝑟𝑎𝑎𝑅𝑅𝑛𝑛/(𝜌𝜌𝑐𝑐𝑝𝑝)

1. Canopy Temperature – Jackson et al. (1981)

2. Temperature - Vegetation Index Trapezoid – Moran et al. (1994)

2

Complex computation of canopy temperature, canopy and aerodynamic resistances for 
partially vegetated fields  

AGU Annual Meeting, December  1-17, 2020



Water Flow in Soils and Root Water Uptake

𝜕𝜕𝜕𝜕(ℎ)
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕 𝐾𝐾 ℎ

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐾𝐾(ℎ) − 𝑆𝑆 Sink Term

𝑆𝑆𝑃𝑃 𝑧𝑧, 𝑡𝑡 = 𝑇𝑇𝑃𝑃 𝑡𝑡 𝑏𝑏(𝑧𝑧)

𝑆𝑆𝑟𝑟𝑟𝑟 𝑧𝑧, 𝑡𝑡 = 𝑆𝑆𝑃𝑃 𝑧𝑧, 𝑡𝑡 . 𝑎𝑎(𝑡𝑡)

𝑎𝑎(t): Root water uptake/stress reduction function (low matric potential in dry soil and limited aeration in wet soil)

SP [T-1] : Potential root water uptake
𝑇𝑇𝑃𝑃 [LT-1] : Potential transpiration rate (meteorological data and plant parameters)
b [L]: Normalized root water uptake distribution function (integrates to unity)
Sru [T-1] : Reduced root water uptake

3

Richards Equation:

Transient Water Flow in Soil

 Microscopic Approach: highly complex – vast number of difficult to obtain 
input parameters for the plant root system are required.

 Macroscopic Approach: simpler – less parameters.
1. Specification of spatial distribution of potential root water uptake (depends on 

atmospheric demand and root distribution).

2. Computation of a reduction to root water uptake due to water stress in dry soil and 
oxygen deficit in wet soil

3. Calculation of a compensated actual root water uptake rate
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Root Water Uptake Reduction Function
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ℎ2(𝑇𝑇𝑝𝑝) =
ℎ2𝐿𝐿 𝑇𝑇𝑝𝑝≤ 𝑟𝑟𝐿𝐿 𝑜𝑜𝑜𝑜𝑇𝑇𝑃𝑃𝑙𝑙

ℎ2𝐻𝐻 + (ℎ2𝐿𝐿 − ℎ2𝐻𝐻/𝑟𝑟𝐻𝐻 − 𝑟𝑟𝐿𝐿)(𝑟𝑟𝐻𝐻 − 𝑇𝑇𝑝𝑝) 𝑟𝑟𝐿𝐿 𝑜𝑜𝑜𝑜 𝑇𝑇𝑃𝑃𝑙𝑙 < 𝑇𝑇𝑝𝑝 < 𝑟𝑟𝐻𝐻 𝑜𝑜𝑜𝑜 𝑇𝑇𝑃𝑃ℎ

ℎ2𝐻𝐻 𝑇𝑇𝑝𝑝≥ 𝑟𝑟𝐻𝐻 𝑜𝑜𝑜𝑜 𝑇𝑇𝑃𝑃ℎ



Quantification of Crop Water Stress

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃𝑎𝑎,ℎ,𝑇𝑇𝑝𝑝) = [1 − 𝛼𝛼𝑡𝑡(𝜃𝜃𝑎𝑎, ℎ,𝑇𝑇𝑝𝑝)] × 100

CWSI Range Water Stress Class

> 80% Extremely High

60 – 80 % High

40 – 60 % Medium to High

20 – 40 % Low to Medium

10 – 20 % Low

< 10 % No Stress

𝑎𝑎𝑡𝑡 𝜃𝜃𝑎𝑎,ℎ = 𝑎𝑎𝑎𝑎 𝜃𝜃𝑎𝑎 .𝑎𝑎𝑑𝑑(ℎ)

𝑎𝑎𝑡𝑡: total stress due to oxygen deficit in wet soil and low matric potential in dry soil

5

Proposed Crop Water Stress Index (CWSI)
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Quantifying Soil Matric Potential

𝑆𝑆𝑟𝑟 = �𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑑𝑑,1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑠𝑠𝑑𝑑,2)+(𝑖𝑖𝑑𝑑−1

�𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑤𝑤,1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑤𝑤,2)−𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑑𝑑,1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑠𝑠𝑑𝑑,2)+(𝑖𝑖𝑤𝑤−𝑖𝑖𝑑𝑑

𝑆𝑆𝑟𝑟 =
𝜃𝜃 − 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑

𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤 − 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑
=

𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑇𝑇𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑑𝑑𝑑𝑑𝑑𝑑

𝑇𝑇𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑇𝑇𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑑𝑑𝑑𝑑𝑑𝑑

𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
(1 − 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)2

2𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Surface Soil Moisture (cm3 cm-3) 
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Sadeghi et al. (2015)

6

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

ℎ =
1
𝛼𝛼
𝑆𝑆𝑟𝑟
−1𝑚𝑚 − 1

1
𝑛𝑛

𝑆𝑆𝑟𝑟 = 1 + 𝑎𝑎𝑎 𝑛𝑛
1
𝑛𝑛−1Van Genuchten (1980):

Hydraulic Soil Properties

Soil Moisture Estimation with Modified Optical Trapezoid Model – Sadeghi et al. 
(2017)
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Selected Fields and Crops

7

Cantaloupe

Lettuce

Wheat Spinach

 Lettuce
 Spinach
 Cantaloupe 
 Wheat

AGU Annual Meeting, December  1-17, 2020



Soil Moisture Estimation – Optical Method

𝑆𝑆𝑟𝑟 = �𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑑𝑑,1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑠𝑠𝑑𝑑,2)+(𝑖𝑖𝑑𝑑−1

�𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑤𝑤,1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑤𝑤,2)−𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑑𝑑,1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑠𝑠𝑑𝑑,2)+(𝑖𝑖𝑤𝑤−𝑖𝑖𝑑𝑑

8

 Sentinel-2AB Satellite Data
– Bands 12, 8, 4
– Spatial and temporal resolution: 

10-20m and ~5 days

 Parameterization of the Optical Model
– Fitting nonlinear functions to the upper and lower 

edges of the feature space
– Determining the model parameters
– Estimate Sr for all pixels with known TRSWIR and 

NDVI: 
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Validation of Remotely Sensed Soil Moisture
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Soil Basic Parameters

10

 Soil physical properties from the GSSURGO (USDA-NRCS) database

Sand Silt Clay
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Hydraulic Soil Parameters

11

 The van Genuchten (1980) SWC model parameters were obtained from 
Rosetta Pedotransfer Functions – Schaap et al. (2001)
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Root Water Uptake & Stress Function

r2 or ET=0.9 cm d-1 h2=-100 cmWheat:

Iceberg: r2 or ET=0.6 cm d-1 h2=-422 cm

Spinach: r2 or ET=1.0 cm d-1 h2=-145 cm
Cantaloupes: r2 or ET=0.85 cm d-1 h2=-262 cm

12

100)],,(1[),( ×−= patp ThThCWSI θα

For specific date

 Root water uptake reduction function parameters – Wesseling et al. (1991)
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Spatiotemporal Dynamics of Soil Moisture, Matric Potential, and CWSI

13

Lettuce

Crop Water Stress Index (%)

Volumetric Water Content (cm3 cm-3)

Matric Potential (pF = log10|-cm H2O|)
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14

Spinach

Crop Water 
Stress Index (%)

Volumetric Water
Content (cm3 cm-3)

Matric Potential
(pF = log10|-cm H2O|)

Spatiotemporal Dynamics of Soil Moisture, Matric Potential, and CWSI
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15

Spatiotemporal Dynamics of Soil Moisture, Matric Potential, and CWSI

Cantaloupe

Crop Water Stress Index (%)

Volumetric Water Content (cm3 cm-3)

Matric Potential (pF = log10|-cm H2O|)
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16

Spatiotemporal Dynamics of Soil Moisture, Matric Potential, and CWSI

Wheat

Crop Water 
Stress Index (%)

Volumetric Water
Content (cm3 cm-3)

Matric Potential
(pF = log10|-cm H2O|)
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Comparison of Estimated CWSI with CWDI from Eddy Covariance Data

CWSI Range Water Stress Class

> 80% Extremely High

60 – 80 % High

40 – 60 % Medium to High

20 – 40 % Low to Medium

10 – 20 % Low

< 10 % No Stress

19

C
W

SI
 (%

)
C

W
SI

 (%
)

C
W

SI
 (%

)
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17

Sentinel-2 CWSI vs. Landsat-8 CWDI

Spinach

𝐶𝐶𝐶𝐶𝐷𝐷𝐼𝐼 = 1 −
𝜆𝜆𝐸𝐸Γ
𝜆𝜆𝐸𝐸Γ𝑃𝑃

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ,𝜃𝜃𝑎𝑎,𝑇𝑇𝑝𝑝)
= [1 − 𝛼𝛼𝑡𝑡(𝜃𝜃𝑎𝑎,ℎ,𝑇𝑇𝑝𝑝)] × 100
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18ASA / CSSA / SSSA Annual Meeting, November  9-13, 2020

Sentinel-2 CWSI vs. ECOSTRESS ESI

Lettuce

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ,𝜃𝜃𝑎𝑎 ,𝑇𝑇𝑝𝑝)
= [1 − 𝛼𝛼𝑡𝑡(𝜃𝜃𝑎𝑎 , ℎ,𝑇𝑇𝑝𝑝)] × 100

𝐸𝐸𝑆𝑆𝐼𝐼 =
𝜆𝜆𝐸𝐸Γ
𝜆𝜆𝐸𝐸Γ𝑃𝑃

ECOSTRESS Satellite 
Evaporative Stress Index

No Stress to 
Medium Stress

Low Stress to 
Medium Stress

Se
nt

in
el

-2
EC

O
ST

R
ES

S



Conclusions and Outlook 

20

 The modified optical trapezoid model shows promising potential for farm 
scale estimation of soil moisture variability.

 The new CWSI is obtained from remotely sensed soil moisture, hydraulic soil 
parameters and evapotranspiration rate. 

 Pending further refinements and tests for a vast variety of crops, the new 
CWSI seems to be a great alternative means for crop water stress 
characterization and monitoring under full crop cover and for partially 
vegetated soils.

 The presented approach can be applied in conjunction with Unmanned Aerial 
System observations to assist with farm scale precision irrigation 
management and improve water use efficiency of cropping systems.
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 For questions and suggestions please contact Ebrahim Babaeian 
(ebabaeian@arizona.edu) and Markus Tuller (mtuller@arizona.edu).
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