A New Crop Water Stress Index for Desert Agriculture Derived from Satellite Observations and Soil Hydraulic Parameters

Markus Tuller¹, Andrew N. French², Mazin Saber³, Charles A. Sanchez¹, and Ebrahim Babaeian¹

¹ Dept. of Environmental Science, University of Arizona, Tucson, AZ
 ² U.S. Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ,
 ³ Yuma Center of Excellence for Desert Agriculture, The University of Arizona, Yuma, AZ

Yuma Desert Agriculture

The arid Yuma region in southwestern Arizona is considered as the Winter Vegetable Capital of the World that grows about 90% of winter vegetables in the U.S.

Annual gross economic return of about \$3.2 billion.

- Longest growing season in the U.S. with mild winters.
- Sediments deposited by Colorado river over millions of years provide fertile soils.
- Less than 3 inches of precipitation high quality Colorado River irrigation water.
- Declining irrigation water resources is a major concern for many intensively cultivated arid and semi-arid agricultural systems.

Quantification of Crop Water Deficit

1. Canopy Temperature – Jackson et al. (1981)

Complex computation of canopy temperature, canopy and aerodynamic resistances for partially vegetated fields

SAVI

Water-Stressed Vegetation

Well-watered

Vegetation

0.8

Water Flow in Soils and Root Water Uptake

Transient Water Flow in Soil

Richards Equation:

$$\frac{\partial \theta(h)}{\partial t} = \frac{\partial}{\partial z} \left(K(h) \frac{\partial h}{\partial z} + K(h) \right) \xrightarrow{\text{Sink Term}} \text{Sink Term}$$

- Microscopic Approach: highly complex vast number of difficult to obtain input parameters for the plant root system are required.
- Macroscopic Approach: simpler less parameters.
 - 1. Specification of spatial distribution of potential root water uptake (depends on atmospheric demand and root distribution).
 - 2. Computation of a reduction to root water uptake due to water stress in dry soil and oxygen deficit in wet soil
 - 3. Calculation of a compensated actual root water uptake rate

 $S_P(z,t) = T_P(t)b(z)$

 $S_{ru}(z,t) = S_P(z,t).a(t)$

 S_{P} [T⁻¹] : Potential root water uptake

 T_P [LT⁻¹] : Potential transpiration rate (*meteorological data and plant parameters*) b [L]: Normalized root water uptake distribution function (integrates to unity) S_{ru} [T⁻¹] : Reduced root water uptake

a(t): Root water uptake/stress reduction function (low matric potential in dry soil and limited aeration in wet soil)

Root Water Uptake Reduction Function

Feddes et al. (1978)

$$\alpha(h) = \begin{cases} 0 & h_0 \le h \\ (h - h_0) / (h_1 - h_0) & h_1 < h < h_0 \\ 1 & h_2 \le h \le h_1 \\ (h - h_3) / (h_2 - h_3) & h_3 < h < h_2 \\ 0 & h \le h_3 \end{cases}$$
$$h_2(T_p) = \begin{cases} h_2^L \\ h_2^L + (h_2^L - h_2^H / r_H - r_L)(r_H - T_p) \end{cases}$$

$$T_{p} \leq r_{L} \text{ or } T_{P}^{l}$$

$$r_{L} \text{ or } T_{P}^{l} < T_{p} < r_{H} \text{ or } T_{P}^{h}$$

$$T_{p} \geq r_{H} \text{ or } T_{P}^{h}$$

Peters et al. (2017)

 h_2^H

$$\alpha_{a}(\theta_{a}) = \begin{cases} 0 & \theta_{a} \leq \theta_{a,c} \\ \theta_{a} - \theta_{a,c} / \theta_{a,o} - \theta_{a,c} & \theta_{a,c} < \theta_{a} < \theta_{a,o} \\ 1 & \theta_{a} \geq \theta_{a,o} \end{cases}$$
$$\alpha_{d}(h) = \begin{cases} 0 & h \leq h_{3} \\ h - h_{3} / h_{2} - h_{3} & h_{3} < h < h_{2} \\ 1 & h \geq h_{2} \end{cases}$$

AGU Annual Meeting, December 1-17, 2020

Quantification of Crop Water Stress

$$a_t(\theta_a, h) = a_a(\theta_a).a_d(h)$$

 a_t : total stress due to oxygen deficit in wet soil and low matric potential in dry soil

Proposed Crop Water Stress Index (CWSI)

$$CWSI(\theta_a, h, T_p) = [1 - \alpha_t(\theta_a, h, T_p)] \times 100$$

CWSI Range	Water Stress Class
> 80%	Extremely High
60 - 80 %	High
40 - 60 %	Medium to High
20-40 %	Low to Medium
10-20 %	Low
< 10 %	No Stress

Quantifying Soil Matric Potential

Hydraulic Soil Properties

Van Genuchten (1980):

$$S_r = [1 + |ah|^n]^{\frac{1}{n} - 1}$$

$$h = \frac{1}{\alpha} \left[S_r^{-\frac{1}{m}} - 1 \right]^{\frac{1}{n}}$$

Soil Moisture Estimation with Modified Optical Trapezoid Model – Sadeghi et al. (2017)

Selected Fields and Crops

- Lettuce
- Spinach
- Cantaloupe
- Wheat

Soil Moisture Estimation – Optical Method

Sentinel-2AB Satellite Data

- Bands 12, 8, 4
- Spatial and temporal resolution:
 10-20m and ~5 days

Parameterization of the Optical Model

- Fitting nonlinear functions to the upper and lower edges of the feature space
- Determining the model parameters
- Estimate S_r for all pixels with known TR_{SWIR} and NDVI:

$$S_{r} = \frac{TR_{SWIR} - exp(s_{d,1}NDVI^{s_{d,2}}) + (i_{d}-1)}{exp(s_{w,1}NDVI^{s_{w,2}}) - exp(s_{d,1}NDVI^{s_{d,2}}) + (i_{w}-i_{d})}$$

Validation of Remotely Sensed Soil Moisture

Soil Basic Parameters

Soil physical properties from the GSSURGO (USDA-NRCS) database

Field ID	Crop Type	Planting	Harvesting	Clay	Silt	Sand	ρ_b	θ_{FC}	θ_{PWP}
(Station ID)	Clop Type	Date	Date	(%)	(%)	(%)	(g cm-3)	(cm ³ cm ⁻³)	(cm ³ cm ⁻³)
Smith1 (ALARC1)	Wheat	5 Jan. 18	31 May 18	50	27.9	22.1	1.22	0.426	0.263
OTT807 (JPL2)	Iceberg	8 Oct. 18	4 Jan. 19	50	27.9	22.1	1.22	0.426	0.263
JV372 (TL)	Spinach	4 Mar. 19	9 Apr. 19	31	62.3	6.7	1.25	0.303	0.158
Sidewinder18 (UA2)	Cantaloupes	22 Aug. 18	29 Oct. 18	31	62.3	6.7	1.25	0.303	0.158

Hydraulic Soil Parameters

The van Genuchten (1980) SWC model parameters were obtained from Rosetta Pedotransfer Functions – Schaap et al. (2001)

							1000000		
Field ID (Station ID)	Crop Type	θ_r (cm ³ cm ⁻³)	θ_{s} (cm ³ cm ⁻³)	<i>a</i> (cm ⁻¹)	п (-)	Ks (cm d ⁻¹)	1000000 -	\mathbf{X}	Wheat & Lettuce Spinach
Smith1 (ALARC1)	Wheat	0.0855	0.529	0.0087	1.289	23.97			Cantaloupes
OTT807 (JPL2)	Iceberg	0.0855	0.529	0.0087	1.289	23.97	ן 1000 – 100 – 100 –		
JV372 (TL)	Spinach	0.0667	0.464	0.0139	1.360	22.88	– 01 Do – 1 – 1		
Sidewinder18 (UA2)	Cantaloupes	0.0841	0.424	0.0202	1.277	10.38	0.1 ++		
							0 0.1	0.2 0.3	3 0.4 0.5

Soil Moisture Content (m³ m⁻³)

Root Water Uptake & Stress Function

Root water uptake reduction function parameters – Wesseling et al. (1991)

Matric Potential (pF = \log_{10} |-cm H₂O|)

Cantaloupe

Volumetric Water Content (cm³ cm⁻³)

Matric Potential (pF = \log_{10} |-cm H₂O|)

Comparison of Estimated CWSI with CWDI from Eddy Covariance Data

CWSI Range	Water Stress Class
> 80%	Extremely High
60 - 80 %	High
40-60 %	Medium to High
20-40 %	Low to Medium
10-20 %	Low
< 10 %	No Stress

Sentinel-2 CWSI vs. Landsat-8 CWDI

Spinach

 $CWSI(h, \theta_a, T_p) = [1 - \alpha_t(\theta_a, h, T_p)] \times 100$

$$CWDI = 1 - \frac{\lambda E_{\Gamma}}{\lambda E_{\Gamma P}}$$

SAGU

Sentinel-2 CWSI vs. ECOSTRESS ESI

Lettuce

 $CWSI(h, \theta_a, T_p) = [1 - \alpha_t(\theta_a, h, T_p)] \times 100$

Conclusions and Outlook

- The modified optical trapezoid model shows promising potential for farm scale estimation of soil moisture variability.
- The new CWSI is obtained from remotely sensed soil moisture, hydraulic soil parameters and evapotranspiration rate.
- Pending further refinements and tests for a vast variety of crops, the new CWSI seems to be a great alternative means for crop water stress characterization and monitoring under full crop cover and for partially vegetated soils.
- The presented approach can be applied in conjunction with Unmanned Aerial System observations to assist with farm scale precision irrigation management and improve water use efficiency of cropping systems.

Acknowledgments

- This project is supported by the Yuma Center of Excellence for Desert Agriculture (YCEDA) and the United States Department of Agriculture (USDA) – National Institute of Food and Agriculture (NIFA) grant #2020-67019-31028, and from the USDA NIFA Hatch/Multi-State project # ARZT-1370600-R21-189.
- Special thanks go to Dr. Paul Brierley and Dr. Stephanie Slinski from YCEDA, and to Mark Smith, President of Smith Farms Company of Yuma, for their support and invaluable feedback.

United States Department of Agriculture National Institute of Food and Agriculture

 For questions and suggestions please contact Ebrahim Babaeian (<u>ebabaeian@arizona.edu</u>) and Markus Tuller (<u>mtuller@arizona.edu</u>).

