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A B S T R A C T   

A satellite-based vegetation index model that tracks daily crop growth and evapotranspiration (ETc) is developed, 
tested, and validated over irrigated farms in Yuma irrigation districts of Arizona and California. Model inputs are 
remotely sensed normalized difference vegetation index (NDVI) images, crop type maps, and local weather. The 
utility and novelty of the model is a more accurate assessment of ETc than currently provided by the US Bureau of 
Reclamation’s evapotranspiration modeling system. The model analyzes NDVI time series data from the Euro
pean Space Agency’s Sentinel-2 satellites using the Google Earth Engine, constructs FAO-56 style crop growth 
stages from NDVI, and then estimates daily ETc using pre-defined crop coefficients (Kc) and grass reference 
evapotranspiration (ETos). Four crops were selected to test and evaluate model performance: short-season 
broccoli, mid-season cotton and wheat, and perennial alfalfa. Comparison of model results showed that Recla
mation reports overestimate alfalfa and wheat ETc by 21–25%, cotton ETc by 6%, and underestimate broccoli ETc 
by 21%. Variability resolved by the model ranged 6–18% of median total ETc. Comparison of model results with 
those obtained from 13 eddy covariance sites showed validation discrepancies ranging 1–14%: average total 
actual ETc differences were 12, − 14, 78, and 87 mm/season, respectively, for alfalfa, broccoli, cotton, and 
wheat. The wide availability of Sentinel-2 data, collected every 5 days or less, and the rapid processing via 
Google Earth Engine make the vegetation index model implementation fast and practical. Its accuracy and ability 
to resolve ETc for every field would benefit the Reclamation water accounting system and provide valuable 
consumptive water use data for any Colorado River stakeholder.   

1. Introduction 

The Lower Colorado River is a critical resource for irrigated agri
culture where consumptive use is approximately 3.7 km3/year (~3 M 
ac-ft/year) of water, applied over 335,890 ha (830,000 ac) (Reclama
tion, 2014). Its availability makes possible a regional economy worth 
billions of dollars (James et al., 2014). The U.S. Department of Interior, 
through the U.S. Bureau of Reclamation (Reclamation), manages river 
resources, and by U.S. Supreme Court Decree (547 U.S. 150 (1963, 
consolidated 2006)) is required to account for annual water use. The 
purpose of this study is to introduce an approach that could help 
improve these water accounting obligations. To better understand why, 
some background on official reports and techniques is presented. 

Reclamation primarily collects, summarizes, and reports water use 

data in two documents. In one, the ‘Colorado River Accounting and 
Water Use Report’ (Water Report, available from https://usbr.gov/lc/ 
region/g4000/wtracct.html), water users in Arizona, California, and 
Nevada are tabulated with their corresponding uses: water diversions, 
measured returns, unmeasured returns, and consumptive use. Also re
ported are summaries by state and Mexico for consumptive use, 
bypassed water, banked and stored water, intentional surplus, and 
drought contingency contributions. The chief use for the Water Report is 
to document Decree entitlement compliance by users and, more 
recently, to document compliance with reduced allotments. The Water 
Report is scrutinized by users and entities in all seven Basin States. As 
the water supply is less than demand, every user, and especially the 
junior priority users, Metropolitan Water District of Southern California 
and the Central Arizona Water Conservation District, are particularly 
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vigilant in reviewing all values in the Water Report. A companion report, 
initiated in the mid-1990’s, entitled the ‘Lower Colorado River Annual 
Summary of Evapotranspiration and Evaporation’ (Evapotranspiration 
Report; available from https://www.usbr.gov/lc/region/g4000/4200 
Rpts/DecreeRpt/2015/2015.pdf and usbr.gov/lc/region/g4000/wtr 
acct.html), adds details not provided in the Water Report. These 
include spatial analysis of agricultural and riparian vegetation water 
use, open water evaporation, crop type distributions, and estimated crop 
water use. The Evapotranspiration Report associates consumed water 
with users, entities, and districts. Most relevant to this study, it combines 
remote sensing observations of land cover type, weather data, and 
standardized crop evapotranspiration models, to estimate consumptive 
use. 

The Evapotranspiration Report provides crop evapotranspiration 
(ETc) by utilizing crop coefficient curves defined by crop coefficients 
(Kc) adapted from FAO-56 and ASCE (Allen et al., 1998; Allen et al., 
2005), and by crop growth stages. While two Kc versions are described in 
FAO-56, only the single-coefficient model is used, as shown in Eq. 1: 

ETc = Kc⋅ETos (1)  

where ETos is grass-referenced Penman-Monteith evapotranspiration as 
described in Allen et al. (2005). Use of ETos, instead of ETo, is done to 
avoid confusion and ambiguity with Arizona and California weather 
data sets, where ETo sometimes does not represent FAO-56 grass 
referenced evapotranspiration (see https://extension.arizona.edu/site
s/extension.arizona.edu/files/pubs/az1324.pdf for details). The Kc 
values vary with crop type and are constructed from three reference Kc 
values representing the initial bare soil condition, the mid-season full-
cover condition, and end-of-season. Actual crop growth, as represented 
by fraction cover, usually varies smoothly from day-to-day, but the 
FAO-56 simplifies growth patterns by partitioning a season into four 
stages: initial (L INI), development (L DEV), mid-season (L MID), and 
end-of-season (L END). Kc values are constant within the L INI and L MID 
stages and are linearly connected through the L DEV stage. The final 
growth stage coefficients are defined by linearly connecting the Kc L MID 
reference value to the Kc L END reference value (Fig. 1). Selection of the 
appropriate reference Kc values for the Evapotranspiration Report is 
determined from crop class maps obtained from remote sensing image 
data, primarily from Landsat (www.usgs.gov/cor
e-science-systems/nli/landsat) and airborne photogrammetric surveys 
(USDA National Agricultural Imaging Program [NAIP]). Kc values are 
provided for all major crops and are updated from time-to-time (e.g., 
Wright, 1982, Mhawej et al., 2021, Pereira et al., 2018, Pereira et al., 

2021). 
Growth stages are less commonly updated. While there is extensive 

literature describing how crop growth can be monitored with remote 
sensing, particularly with the Normalized Difference Vegetation Index 
(NDVI, Fischer, 1994), the reports focus on crop phenological moni
toring, and do not specifically define all four FAO-56 stages. Illustrative 
examples are provided by Seo et al. (2019), who employ logistic models 
for tracking corn and soybean, and by Yang et al. (2013), who create 
web-based tools to identify start, end, and peak of growing seasons. 

Nevertheless, it is important to find ways to specify appropriate L 
values because they are sensitive to local environmental conditions and 
farming practices. Accordingly, use of generalized growth stages will 
generate inaccurate time-interpolated Kc values. This pitfall is empha
sized in FAO-56 (Table 11, p 104): “Lengths of crop development stages 
provided in this table are indicative of general conditions but may vary 
substantially from region-to-region, with climate and cropping condi
tions, and with crop variety. The user is strongly encouraged to obtain 
appropriate local information.” Obtaining localized crop development 
growth length stages, however, is costly and time consuming, and 
determining stage lengths when considering differences in crop vari
eties, crop market conditions, and environmental factors is confounding. 
Field observations, reports, surveys, and local knowledge must be 
compiled over several years to yield meaningful growth curves. 

One possible option to constrain crop development stage lengths is to 
use growing degree days (GDD). Use of GDD tends to focus on estimation 
of time of maturity (Wang, 1960). Studies consider all major crops, 
examples include soybean (Lou et al., 2023), maize (Cross and Zuber, 
1972), sorghum (Conley and Wiebold, 2003), cotton (Peng et al., 1989). 
More recently, GDD have been used with other observations to improve 
accuracy, such as solar radiation for lettuce (Wurr, Fellows and Suck
ling, 1988), or use NDVI for crop type mapping (Skakun et al., 2017). 
The utility of GDD for crop development mapping, however, may be too 
generalized: its requirement for knowledge of planting dates must be 
supplied in other ways. Another difficulty is GDD are statistically aver
aged generalizations of crop development and thus may not represent 
local conditions. As McMaster and Smika (1988) point out in their wheat 
study, GDD are sensitive to variations in agronomic factors such as 
cultivars, row spacing, fertilizer and planting dates. Water stress, unre
solved by GDD, alters growth development and may need additional 
information to adjust development estimates (Mahan et al., 2014). 

Recent transformative developments can improve specificity and 
overcome obstacles to gaining accurate growth stage data. Improved 
availability, frequency, spectral sampling, and spatial resolution of 

Fig. 1. Time series comparison of crop coefficients (Kc x 10, green), reference evapotranspiration (ETos, red), and crop evapotranspiration (ETc, black), illustrated for 
the Evapotranspiration Report small grains (wheat) model. Transitions between growth stages are delineated by vertical dotted lines. 
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remote sensing image data now makes possible the observations of 
vegetation cover at sub-field scales at nearly daily time steps. With the 
launch of the European Space Agency satellites Sentinel-2A and 2B in 
the period 2015–2017, 10 m resolution data could be acquired at least 
every 5 days, meaning that by using NDVI one can distinguish between 
bare soil, partial cover, and full-cover fields. In its current configuration, 
the Evapotranspiration Report uses remote sensing data obtained 
quarterly for crop classification mapping, but with nearly daily NDVI, 
the approach could be extended to track growth stages without relying 
on statically defined L values. 

A second transformative development has been the creation of cloud- 
based satellite image processing services, such as Google Earth Engine 
(earthengine.google.com) and Sentinel-Hub (www.sentinel-hub.com). 
Previously all image collections, each exceeding 100MB, had to be 
located on provider servers, downloaded to local computers, and then 
processed. Cloud-based data processing enables rapid extraction of field- 
specific NDVI data without the burden of downloading the source data. 

An additional consideration for improving the Evapotranspiration 
Report is its potential performance compared with competing evapo
transpiration models. In parallel with remote sensing improvements and 
availability, the accuracy and robustness of evapotranspiration 
modeling has improved (Fisher et al., 2017). Two main modeling ap
proaches, both distinct from the Evapotranspiration Report methodol
ogy, have become established: 1) evapotranspiration is estimated from 
empirical relationships between vegetation cover and NDVI (e.g., 
Johnson and Trout, 2012), and 2) evapotranspiration is modeled by 
combining physical processes using surface energy balance models and 
land surface temperature data with NDVI (e.g., Norman et al., 1995). 
Each has advantages and disadvantages, but relative merits have yet to 
be fully tested. The recently deployed OpenET project (openetdata.org), 
currently producing monthly ET estimates from the six different models 
over the Western USA, will help resolve some questions about accuracy, 
bias, and robustness of the incorporated six different ET models. 

In the first modeling approach, NDVI observations are used to 
empirically connect remotely sensed images with fractional vegetation 
cover, and then estimate actual ETc (ETc_act). Examples include SIMS 
(Satellite Irrigation Management Support; Melton et al., 2012) and VISW 
(Vegetation Index ET for the US Southwest; French et al., 2018). These 
approaches use Kc values, crop-specific parameters, weather data, and 
reference evapotranspiration (Monteith and Unsworth, 1990) to obtain 
periodic ETc. NDVI-based methodologies use freely available 10–30 m 
resolution, multispectral satellite image data, enabling the generation of 
daily ETc at field scales. 

In the second modeling approach, ETc is obtained from surface en
ergy balance estimates based on environmental physical conditions and 
empirical relationships connecting soil, water, vegetation, and atmo
spheric components. Models include Mapping EvapoTranspiration at 
high Resolution and with Internalized Calibration (METRIC; Allen et al., 
2007), Surface Energy Balance Algorithm for Land (SEBAL; Bastiaanssen 
et al, 2005), Atmosphere-Land EXchange Inverse (ALEXI) flux with 
Disaggregation approach (disALEXI; Anderson et al., 2011), and 
Simplified Surface Energy Balance (SSEBop; Senay et al., 2013). Model 
physics use land surface temperature observations to constrain energy 
fluxes, and to estimate plant transpiration and bare soil evaporation. 
Model empirical relations use NDVI data for fractional cover estimation, 
and sometimes for partitioning of energy fluxes between plants and soil. 
Because energy balance models incorporate observations of land surface 
temperature, they are potentially more robust and more geographically 
general than the first set of NDVI approaches. Further, energy balance 
models can readily detect rapid evapotranspiration changes due to water 
stressed vegetation. However, the land surface temperature sensors 
collect images less frequently, at coarser spatial resolutions than 
visible-near infrared sensors and require interpolation over longer times 
between observations. 

Our study’s objectives are to develop, test, and validate a model that 
improves and extends the existing Evapotranspiration Report while 

keeping in mind that multiple alternative ETc estimation approaches 
exist. The study uses new observations and new tools that could signif
icantly improve the Report in a configuration we refer to as the Vege
tation Index Model. The Model updates crop development growth stages 
for every irrigated field without changing existing Kc values. The 
investigation is reported in three steps. In the first step, methods are 
developed to extract vegetation cover from NDVI images, to convert the 
resulting values to growth stages, and to transform these stage values to 
daily evapotranspiration. Sentinel-2 visible-near infrared image data are 
accessed and processed using Google Earth Engine tools. In the next step, 
results from growth stage analyses are presented. Sensitivity test results 
show the relative importance of growth stage metrics compared to Kc 
values. Then growth stage delineations are reported for four crops: al
falfa, broccoli, cotton, and wheat. These crops represent approximately 
15%, 4%, 5%, and 16% of farm acreage (personal communication, 
synthesis by C. Sanchez using USDA NASS, USBR, and State of Arizona 
reports) were selected to evaluate the impact of the approach on sam
pling short and long-season crops. The evapotranspiration results from 
the Vegetation Index Model are compared with the Evapotranspiration 
Report results. In the third step, the Model is validated by comparing 
modeled growth stages and ETc with eddy covariance evapotranspira
tion, Evapotranspiration Report-based ETc_act, and independently ob
tained ETc values derived from the vegetation index-based OpenET 
model, Satellite Irrigation Management Support (SIMS; Melton et al., 
2012, Pereira et al., 2020). 

2. Methods 

The evapotranspiration study region evaluates the Yuma-Wellton- 
Mohawk districts in the Southwestern USA (32.6◦ N, 114.0◦ W, 30 m 
above sea level, Fig. 2), which is one of six irrigation regions served by 
the Lower Colorado River. The districts fall within the hot, arid desert 
category (BWh) of the Köppen-Geiger climate classification system 
(Beck et al., 2018). Weather data from the University of Arizona’s 
AZMET (https://cals.arizona.edu/AZMET/02.htm) Yuma Valley site 
(32.7118◦ N, 114.7041◦ W, elevation 36 m above sea level), and esti
mates of sky radiation from equations presented in Allen et al. (2005), 
shows the dominance of clear skies throughout the year (Table 1). This 
region is ~70,000 ha (173,000 acres) in area and consumes approxi
mately 8.7 × 108 m3/year of river water (~706,000 ac-ft/year). This 
constitutes ~30% of Arizona’s total consumptive use, 2.99 km3 /year 
(~2426,000 ac-ft/year), and ~10% of all use in the US Lower Colorado 
River, 8.72 km3 /year (~7073,000 ac-ft/year). 

The Vegetation Index Model implemented as described below, is 
composed of four main components (Table 2): 1) data acquisitions, 2) 
NDVI processing, 3) crop growth stage identification, and 4) ETc 
assessment and modeling. Component 1 is outlined in Sections 2.1–2.3. 
Component 2 is described in Section 2.4. Growth stage estimation 
(component 3) is described in Section 2.5, and details procedures for 
selecting day of planting and treatment of single-harvest vs. multiple- 
harvest crops. Assessment steps for component 4 are described in Sec
tion 2.6. 

2.1. Assembling Crop Maps 

FAO-56 lengths of crop development stages were derived from field- 
level crop classification maps obtained from Reclamation’s assessment 
program (https://www.usbr.gov/lc/region/g4000/wtracct.html). The 
classifications were derived from extensive field and remote sensing 
campaigns to identify crops, open water surfaces, and riparian zones 
within the Lower Colorado River region. The campaigns chart over 
125,000 sites encompassing 1.4 million ha, use 30-m Landsat 7 & 8 
remote sensing images (https://www.usgs.gov/core-science-systems/ 
nli/landsat), and 1-m USDA National Agricultural Imaging Program 
airborne data (NAIP, https://www.fsa.usda.gov/programs-and- 
services/aerial-photography/imagery-programs/naip-imagery/). 
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Updates are done annually following procedures described in Stehman 
and Milliken (2007). There are over 14,000 sites across the 
Yuma-Wellton region. For this study we used only ground-verified sites 
for the period 2018–2020: ~1100 sites, totaling ~8500 ha, each site no 
smaller than 2 ha (5 acres). The verified sites represent about 12% of all 
agricultural land in the Yuma region. To assess improvement to the 
Evapotranspiration Report approach, we made selections that respec
tively represent episodic, short as well as long season, and widely 
distributed crops grown during 2018–2020: alfalfa, broccoli, cotton, and 
wheat (Table 3). 

Fig. 2. Study area in Arizona (AZ) and California (CA), extending 100 km east-west and 40 km north-south. Mexico lies to the south and west. Reclamation-supplied 
field validated polygons (70,000 ha) are outlined in red, other fields are outlined in gray. Extent of the Yuma-Wellton evaluation area is outlined in blue, AZMET 
weather stations indicated by black symbols, and eddy covariance sites by yellow. 

Table 1 
Monthly summary for weather observations obtained for the period 2016–2021 
at the Yuma Valley AZMET station. Variables include near surface air temper
ature (Tair), relative humidity (RH), dewpoint temperature (Tdew), wind speed 
at 2 m above the ground (U2), precipitation (PPT), grass reference evapotrans
piration (ETos), and the ratio of observed to estimated clear sky solar radiation at 
typical local satellite overpass time of 11AM (Rs/Rso).  

Month Tair 
(◦C) 

RH 
(%) 

Tdew 
(◦C) 

U2 
(m/s) 

PPT 
(mm) 

ETos 

(mm/ 
day) 

Rs/ 
Rso 

Jan 13.1 49.1 1.6 1.5 8.4 3.0 0.83 
Feb 14.7 38.6 1.2 1.6 0.5 4.4 0.87 
Mar 18.1 38.5 3.6 1.8 0.5 5.6 0.90 
Apr 22.1 33.4 5.4 1.8 0.3 7.1 0.93 
May 24.0 35.0 7.6 1.7 0.0 7.9 0.94 
Jun 30.6 29.5 9.7 1.7 0.0 8.8 0.93 
Jul 33.5 35.1 16.2 2.0 0.8 8.7 0.88 
Aug 33.5 39.3 18.3 2.0 0.0 8.0 0.86 
Sep 30.2 36.8 14.1 1.8 1.3 6.8 0.86 
Oct 24.0 35.0 7.1 1.4 0.0 5.3 0.89 
Nov 17.5 39.8 4.1 1.3 0.0 3.7 0.85 
Dec 12.9 48.0 1.5 1.4 5.3 2.6 0.81  

Table 2 
Vegetation Index Model implementation components.  

Vegetation Index Model Implementation 

1 2 3 4 
Data Acquisitions NDVI Processing Identify Growth 

Stages 
Model ETc 

Weather stations Cloud screening Set time window 
for crop type 

Generate 
daily Kc 

Crop maps Outlier removal Find NDVI 
extremes 

Select ETos 

FAO-56 crop 
coefficients & 
durations 

Interpolation to 
daily 

Apply quantiles to 
NDVI 

Compute 
daily ETc 

Satellite NDVI via 
Google Earth 
Engine 

Smooth with 
weekly window 

Find days of 
growth stage 
transitions 

Compute 
season ETc   

Constraint 
selection day of 
planting   

Table 3 
Crop names, their corresponding Lower Colorado River Reclamation code (ER), 
period of field verification, and the average number of Sentinel-2 scenes ac
quired for each crop type. For some crops in the Evapotranspiration Report the 
Kc curves are based on groups as denoted in parentheses.  

Crop ER Code Period Number of Clear-Sky Sentinel-2 
Scenes 

2018 2019 2020 

Alfalfa 100 Jul 76 89 92 
Broccoli (Crucifer) 1301 Dec 51 81 44 
Cotton 200 Jul 80 109 113 
Wheat (Small Grains) 405 Feb 38 31 52 
Total   245 310 301  
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2.2. The Evapotranspiration Report Crop Coefficient Patterns 

The Evapotranspiration Report Kc values, day of planting (DOP), and 
growth duration variables (L), as employed in (Jensen et al., 1990; 
Jensen, 1998; Jensen, 2003) , are presented for the three single season 
selected crops (Table 4). Kc values, reported verbatim, were developed 
from FAO-56 and adjusted for local weather (Jensen, 2003). The Report 
does not use the stress coefficient, Kc. Coefficients for alfalfa oscillate 
between 0.368 for the INI stages and 1.104 for MID stages, while the 
corresponding length (days) for stages are specified as listed in Table 5. 

When combined, crop coefficients and growth stage relationships for 
most crops exhibit two distinct patterns (green lines, Fig. 3). One pattern 
(broccoli, cotton, and wheat) follows the single-season trapezoidal FAO- 
56 trajectory, with low Kc values at INI, high Kc at MID, and lower Kc at 
END. The second pattern, used for alfalfa, is a quasi-periodic series of 
trapezoidal FAO-56 trajectories (see FAO-56, p. 127–28, forage), where 
the crop is cut multiple times each year. The Evapotranspiration Report 
specifies 10 cuttings per year for the Lower Colorado irrigation districts. 

2.3. Modeling evapotranspiration with weather and crop coefficients 

Modeled reference evapotranspiration values were needed to assess 
effects on ETc from FAO-56 growth duration revisions. We used daily 
Yuma Valley weather station data. Since 2003, the AZMET network has 
provided two versions of reference evapotranspiration (ag.arizona.edu/ 
azmet/et2.htm). One version, ET0, is similar, but not identical to the 
CIMIS standard grass-reference (height 0.08–0.15 m; Snyder and Pruitt, 
1985); it differs in its estimation of net radiation. The other version uses 
a short reference crop (height 0.12 m), denoted ‘ETos‘ (Allen et al., 
2005). Following Reclamation practice since 2003, ETos has been used 
for all crops. Its adoption standardizes reference evapotranspiration 
values for Arizona and California. 

Crop coefficient curves were developed from Kc values, as listed in 
Tables 4 and 5, and mapped to daily time steps, using the Evapotrans
piration Report (documented in the Appendix to the 2008 edition) and 
remotely sensed growth phase data. Thus, Kc INI was applied to calendar 
days between ‘DOY INI’ and ‘DOY INI/DEV’; Kc MID was applied to 
calendar days between ‘DOY DEV/MID’ and ‘DOY MID/END’, and Kc 
END was applied to the day at ‘DOY END’. Kc DEV and Kc END values 
were computed by linear interpolation. Kc values prior to start-of-season 
and following end-of-season were set to zero. Daily ETc were computed 
using Eq. 1, then summed to obtain season total ETc. 

2.4. Processing remote sensing data 

Mean NDVI time series values for every Reclamation-provided 
polygon were obtained from Sentinel-2 A/B satellite data (Sentinel-2; 
https://sentinel.esa.int/web/sentinel/missions/sentinel-2). Sentinel-2 
consists of two identical satellites in opposed near-polar sun-synchro
nous orbits with overpass times ~11 AM local time. Images are collected 
over 12 visible- near infrared bands at resolutions ranging between 10 
and 60 m. Acquisitions for any surface location are collected every 5 
days. Due to Sentinel-2’s wide swath (290 km) and favorable 
geographical and climate for the Yuma sites, clear-sky acquisitions were 
better than nominal, averaging ~3 days. When available, surface 
reflectance data (L2A) were used. For some early 2018 acquisitions, only 
top-of-atmosphere data (L1C) were available. 

Sentinel-2 NDVI values were obtained using the web-based Google 
Earth Engine (Gorelick et al., 2017). Similar tools that could be used are 
Sentinel-Hub (www.sentinel-hub.com) and the R package sen2r (sen2r. 
ranghetti.info). Retrieval of NDVI data from Google Earth Engine was 
done using Javascript instructions that linked Reclamation-provided 
crop maps with Sentinel-2 data for the desired observation periods. 
The instructions selected, filtered, consolidated, and renamed the 
desired bands (B04 and B08). The cloud mask band, QA60, was set to 
zero. Output from Google Earth Engine, provided as comma-separated 
data files on Google Drive folders, were downloaded and analyzed 
using R-scripts (R Core Team, 2020; RStudio Team, 2020). NDVI outliers 
were removed and replaced using a median filter (Brock, 1986). The 
resulting time series were linearly interpolated to daily time steps, then 
smoothed with a 7-day window convolution filter (using the stats::filter 
function in R) to reduce artifacts from clouds and atmospheric correc
tions. The choice of window width was subjective and based on a value 
midway between overpass intervals nominally spaced 5–10 days apart. 
Shorter duration windows would improve resolution of NDVI transitions 
when data collections had high quality but would also increase false 
transition selections when the collections had poorer quality. Longer 
duration windows, on the other hand, reduce false selections, but 
decrease growth stage transition resolution. Acquisition artifacts were 
mostly minor at Yuma, however, for cloudier climates, more processing 
would be needed to build clean NDVI traces (Yang et al., 2022). Results 
were then written to data tables containing field sites, crop type, 
observation dates, and field mean NDVI values at daily time steps. 

It is important to emphasize that there are substantial benefits in 
time, cost, and required resources in using cloud-processing. For this 
study, thousands of images, collectively ~88 GB, and tens of thousands 
of plot polygons had to be accessed for the 3-year water use study at 
Yuma. Using Google Earth Engine, currently available for use at no cost, 
tasks were accomplished in minutes while local data storage was under 
1 GB. The alternative approach- local processing- requires hundreds of 
hours of downloading and processing time and hundreds of GB of per
sonal data storage. Time required increases rapidly with slow data 
connections. Local processing times are exacerbated when needed data 
must be retrieved from archives; recent changes at dataspace.coperni
cus.eu, provider for L2A Sentinel-2 data, now place all but the most 
recent acquisitions into archive storage. 

2.5. Identifying crop growth phases with NDVI 

Daily field scale NDVI data enable modeling of FAO-56 Kc curves by 
mimicking vegetation emergence, development, maturation and harvest 
stages. Quantifying fractional cover from NDVI is not part of the pro
posed Vegetation Index Model. The NDVI time series can be partitioned 
into growth curves for each field either geometrically or quantitatively. 

The geometric approaches transform NDVI by finding curve in
flections deduced from time series filters, trends, or curves (ΔNDVI/ 
ΔTime): transitions between INI, DEV, MID, and END can be located in 
time by short duration changes in ΔNDVI/ΔTime (e.g., the Moving 
Average Convergence Divergence (MACD), Gao et al., 2020). Variations 
can be curve- or trend-based (Gao and Zhang, 2021). The advantage for 
geometric analyses is their greater objectivity; stage partitioning de
pends on observations and not on set thresholds. However, it can be 
difficult to distinguish between short-in-time slope changes that repre
sent actual vegetation growth changes and those that represent 

Table 4 
Evapotranspiration Report crop coefficients and growth stages for broccoli, cotton, wheat.  

Crop Kc DOP L 

INI MID END INI DEV MID END Total 

Broccoli 0.352 1.000 0.892 270 35 47 40 14 136 
Cotton 0.261 1.122 0.569 74 50 89 36 39 214 
Wheat 0.286 1.116 0.308 335 20 35 75 40 170  
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acquisition or processing artifacts. Due to this limitation, we used the 
quantitative approach. 

The quantitative approach analyzes NDVI time series via thresholds 
(e.g., Jonsson and Eklundh, 2002, Huang et al., 2019, Le Page et al., 
2023); phenological transitions are identified by relative changes in 
NDVI without consideration of curve slopes. The implementation used in 
this study, denoted by ‘QUANT’ for convenience, classifies stages for 
every field by using the local range (min/max) of NDVI and the selection 
of transition quantiles that separate the four growth stages. The 
approach is similar to those presented by Jonsson and Eklundh (2002), 
White et al. (2009), Cong et al. (2012), Ren et al. (2019) and Huang et al. 
(2019) for start and end of growing seasons, but differs from them by not 
employing splines, curve-fits, or seasonal periodicities. We chose not to 
use those options because they tend to overly smooth stage transitions. 
NDVI partitioning quantifies the duration of the four FAO-56 growth 
stages and relies upon reference L INI values (specified in the Evapo
transpiration Report) to constrain day of planting estimation. QUANT 
partitions the observed NDVI time-series with quantiles derived from 
field-specific early-season minima and mid-season maxima (Table 6 and  
Fig. 4). Minimum and maximum NDVI values are plotted as open circle 
symbols. NDVI quantiles, corresponding to probability levels of 10%, 
90%, and 50% are computed relative to these extremes. Selection of 
appropriate levels in other studies has been guided by optimizing 

correlation between thresholds and historical day of planting (Huang 
et al., 2019), but day of planting values are not generally known, while 
intervals between day of planting and plant emergence depend upon 
crop types, environment, and management practices. These intervals are 
commonly 3–4 weeks for crops grown at Yuma. For the Vegetation Index 
Model, threshold selection was focused on the identification of the 

Table 5 
Evapotranspiration Report growth stages for alfalfa. Day of Year (DOY) are indicated for the first day of the cutting number. The first and last cuttings of a year overlap 
with the adjacent year so that 10 cuttings occur over 412 days. L END is set to zero days. Kc INI and Kc MID are 0.368 and 1.104, respectively.  

Metric Cutting 

1 2 3 4 5 6 7 8 9 10 

DOY 319 15 75 105 135 166 196 227 258 319 
L INI - 6 1 2 2 2 2 2 2 5 
L DEV - 26 19 24 16 15 15 15 23 20 
L MID 14 28 10 4 13 13 14 14 36 37 
L Total 61 60 30 30 31 30 31 31 61 47  

Fig. 3. Comparing crop coefficients (green, Kc values x10), reference evapotranspiration (red, ETos, mm/day) derived from Yuma Valley AZMET, and Sentinel-2 
NDVI (blue, x10) patterns for four researched crops: wheat, cotton, broccoli, and alfalfa. Day of year annotations for broccoli and wheat are extended beyond 
nominal end of year (365) for plotting continuity. 

Table 6 
Quantile procedure for charting wheat, cotton, and broccoli stage length values. 
All steps are applied to each field individually.  

Step Function Description 

1 Main time 
window 

Select begin and end days for crop 

2 Max/Min Locate maximum NDVI and prior-in-time minimum 
NDVI 

3 Quantiles Using Max/Min, determine NDVI quantiles 
4 Early time 

window 
Select 10% and 90% times between begin and 
maximum NDVI 

5 Day of Planting Determine day of planting using constraints 
6 Late time window Select 90% and 50% times between maximum NDVI 

and end 
7 DOY transitions Record INI/DEV/MID/END transitions days 
8 Stage length 

values 
Calculate INI, DEV, MID, END, and their sum  
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transitions between two events: plant emergence and transition from 
partial to full-cover. The INI/DEV transition uses a 10% threshold 
(significantly earlier than the 20% threshold used by others; Delbart 
et al., 2015, Cong, 2012), marks the approximate start of crop devel
opment, and corresponds approximately to the 10% canopy cover 
threshold used in FAO-56 (Allen et al., 1998, p 95). The beginning and 
end of the MID stage is selected by a 90% quantile, a value chosen to 
approximate the start of full canopy cover. With experience, optimal 
percentages for each crop might be identified. The transition days for 
INI/DEV, DEV/MID, and MID/END are found by linearly interpolating 
the 10% and 90% quantiles, which means that it is important to have 
locally smooth and non-replicated NDVI values. 

Accurate detection of the day of planting is a difficulty facing all 
NDVI approaches. It might correspond to an early season NDVI mini
mum, as used in Jonsson and Eklundh (2002). This correspondence is 
based on field practice- day of planting is close in time to initial irriga
tion events- and the fact that soil wetting usually decreases NDVI values. 
Nevertheless, this brief-in-time NDVI depression is not assured because 
bare-soil NDVI is already close to its minimum. Thus, a selection 
constraint is needed. For the Vegetation Index Model, day of planting 
was chosen assuming it corresponds with the early season NDVI mini
mum as long it lies within 10 days of the nominal FAO-56 duration. 
Because the FAO-56 duration values are estimates, use of a time window 
achieves two objectives: first, it allows NDVI observations to govern day 
of planting selection as long as those observations are within expecta
tions, and second, it provides a reasonable alternative selection when 
NDVI-minima derived estimates lie outside expectations. Use of 10 days 
to govern the expected time interval was not arbitrary but was obtained 
by analysis of observed and estimated day of planting values for vali
dation sites (presented below, Section 3.3). 

Thus, the day of planting determinations for this study were done as 
follows. First, the day of year corresponding to the early season NDVI 
minimum is tentatively considered the day of planting. Next, nominal 
durations of the initial growth stages for the considered crops were 
determined from FAO-56 tables. These were 35, 50, and 20 days for 
broccoli, cotton, and wheat, respectively. Alternative days of planting 
estimates were then determined by subtracting the crop-specific FAO-56 
duration from the NDVI-derived day corresponding to the INI/DEV 

transition. Expected time windows were computed by subtracting and 
adding 10-day buffers to these alternative days. Last, the tentative days 
of planting were compared with the time windows and a day of planting 
selection is made. If the tentative NDVI-based day lies within the win
dow, its value is used, but if it lies outside, the alternative day is used. 

The last stage, END, is identified using a 50% quantile—a value 
chosen to signal end of season while avoiding threshold detection fail
ures that would occur if a lower quantile were used. Note, however, that 
the end of season for vegetable crops corresponds to final harvest of 
green plants and not to senescence. For non-vegetable crops such as 
wheat and cotton, the senescence stage does exist, but it is usually brief 
because of cropping system practice. At Yuma, precedence is given to 
higher value vegetable crops and field preparation for them, which 
means that season lengths for spring and summer crops are commonly 
terminated by early August. 

The steps just described are applicable for vegetable crops, but 
modifications to the thresholds, and procedures to identify them, are 

Fig. 4. Example of quantile selection of growth phases for a wheat field in Yuma, 2020, using filtered daily NDVI (heavy blue line). The minimum and maximum 
values (circle symbols) determine the range for computing quantiles. Horizontal gray lines denote 0–100% quantiles at 10% intervals. The intersection of 10% and 
90% NDVI quantiles (bold horizontal red and green lines at NDVI values of 0.19 and 0.80 respectively) with daily NDVI locates growth stage transitions between INI, 
DEV, and MID. The 50% quantile (yellow line) intersection, during vegetation decline, occurs at the right-most full circle and denotes the last day of the growing 
season for this field. 

Table 7 
Quantile procedure for charting alfalfa ‘L’ values. All steps are applied to each 
field individually.  

Step Function Description 

1 Main time window Select begin and end of calendar year 
2 Seasonal trend line Create seasonal trend, filter NDVI with 71-day 

window 
3 Zero-crossing days Find intersection between trend line and daily 

NDVI 
4 Ascending/ 

Descending 
Differentiate ascending and descending legs 

5 Max/Min Locate maximum and minimum NDVI 
6 Delta Max/Min Compute NDVI change, apply quantile procedure 
7 Quantiles Find 10% and 90% intersections 
8 INI/DEV/MID Locate transitions from quantiles 
9 L INI Compute time between local minima and 10% 

quantile 
10 L DEV Compute time between 10% and first 90% 

quantile 
11 L MID Compute time, first 90% quantile to maximum 
12 L END Compute time, maximum to late minimum 
13 Cutting count Sum number of maxima  
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needed for alfalfa (Table 7). Unlike the single-season crops, alfalfa ex
hibits multiple NDVI minima and maxima, and has abbreviated INI and 
END stages. While FAO-56 documentation lists L values for first and 
subsequent cuttings, use of remotely sensed NDVI can be much more 
accurate and specific: absent cloudy sky intervals, it tracks all cuttings. 
However, due to short durations between growth stages- cutting tran
sitions are brief - it is sometimes difficult to resolve them within 5-day 
remote sensing periodicities. To accommodate this obstacle, the END- 
stage duration is set to span the interval between local NDVI maxima 
and the subsequent NDVI minima. This usually results in END durations 
of 1–2 days. Local NDVI minima demarcate the start of an INI-stage. 
Transitions between INI, DEV, and MID periods are selected as before 
using 10% and 90% quantiles. Because there are multiple stage transi
tions within a year, quantile selections are done separately for each 
cutting cycle (Fig. 5). Minima (circles) and maxima (triangles) are 
identified within each interval and used to compute quantiles. 

The alfalfa cutting stage separations are accomplished by using a 
seasonal trendline that separates local NDVI minima and maxima (red 
line, Fig. 5). By interpolation of the trendline, the days when the NDVI of 
the seasonal trendline equals the filtered daily NDVI line can be found. 
These days demarcate the cutting and full cover time intervals and make 
possible the identification of NDVI extremes for each cutting cycle. 
Every field has its own cutting pattern and unique seasonal trendlines 
must be constructed for each. The approach adopted was to create low- 
pass filtered NDVI trendlines based on an experimentally determined 
smoothing window size. Ten NDVI traces over randomly selected alfalfa 
fields were selected, and trendlines were created using window intervals 
ranging between 10 and 150 days. Longer time intervals work better for 
mid-season discrimination, while shorter intervals avoid excessively 
long taper-on and taper-off periods. Intervals ranging between 50 and 90 
days, with constant end-tapers, were suitable for the Yuma samples and 
the mid-value (71) was selected for all sites. Other sites may require a 
different filter window width to develop seasonal trend curves. 

2.6. Eddy covariance data 

Eddy covariance data were used to validate the proposed Vegetation 
Index Model (Table 8). Except for alfalfa sites, day of planting for each 
site is known- they occurred within one day of eddy covariance de
ployments. Evapotranspiration values were assessed from 13 sites over 4 
crop types: alfalfa, broccoli, cotton, and wheat. Observations were 
analyzed using EddyPro 7 software in express mode (Fratini and 

Mauder, 2014; LI-COR Biosciences, 2021). The following corrections 
were applied: density adjustment (Webb at al, 1980), tilt adjustment 
with double rotation (Wilczak et al., 2001), block averaging to 30 min, 
time lag compensation, spike removal, and spectral corrections at low 
and high frequencies (Moncrieff et al., 2004; Moncrieff et al., 1997). 
Flux footprint analyses were computed using the method of Kljun et al. 
(2004). Gaps in weather variables (air temperature, humidity, wind 
speed, wind direction) were filled using interpolated hourly AZMET 
data. Missing net radiation values were filled using estimates derived 
from linear modeling net radiation against AZMET incoming solar ra
diation. Missing soil heat flux values were filled by replicating values 
from preceding corresponding hours. Missing sensible heat flux and 
latent heat flux values were estimated using the online version of REd
dyProc (https://bgc.iwww.mpg.de/5622399/REddyProc; Wutzler et al., 
2018). Friction velocity (U*) thresholds were selected using the moving 
point test (Papale et al., 2006). This tool could not be used for two 
broccoli data sets because their duration times were < 90 days; for these 
sites, gaps were filled according to the gap duration. For gaps less than 
6 h, H and LE fluxes were linearly interpolated. Longer gaps were filled 
using local-in-time net radiation and Bowen ratio values. Corrections for 
changes in heat storage above heat flux plates and photosynthesis were 
applied (Meyers and Hollinger, 2004). Following Leuning et al. (2012), 
closure was assessed at 24-hour intervals and enforced using the average 
daytime Bowen ratio. Quality of eddy covariance results was quantified 
by regressing daily radiative energy (Rn-G) against advective energy 

Fig. 5. Partitioning alfalfa cuttings at Yuma. Observed NDVI values indicated with solid black symbols, NDVI minima by open circles, and NDVI maxima by triangles. 
The intersections of a seasonal trendline (red) with the NDVI trace facilitate discrimination of local minima and maxima and cutting events (vertical dashed lines). 

Table 8 
Eddy covariance site data used for ETc validation.  

Crop Site Deploy End Area 
(ha) 

Run 
(m) 

Alfalfa YMIDD21–22b1 2022–03–23 2023–05–23  7.2  174 
YMIDD21–22b 2021–03–02 2021–10–12  3.6  180 
YMIDD21–22c 2021–06–11 2022–06–17  3.2  170 

Broccoli BWD19c 2019–09–03 2019–11–25  3.5  184 
WMIDD18–19 2018–11–27 2019–03–28  9.8  355 
BWD18b 2018–09–07 2018–11–04  13.2  382 
BWD20–21 2020–09–26 2021–01–08  7.6  387 

Cotton BWD19b 2019–02–25 2019–09–03  2.6  374 
BWD20b 2020–03–17 2020–08–20  6.3  167 
BWD21a 2021–02–19 2021–08–30  5.3  166 

Wheat YID18a 2017–12–18 2018–06–01  13.0  360 
YID18b 2018–01–08 2018–05–31  12.0  360 
YID18c 2018–01–05 2018–05–31  13.1  360  
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(H+LE) and reporting coefficient of determination (R2) and regression 
slopes (b1). 

Using corrected eddy covariance observations of ETc_act, validity of 
total season ETc from the Evapotranspiration Report, Vegetation Index, 
and SIMS models was assessed in three ways. First cumulative ETc ob
tained from each model was compared with EC ETc_act site-by-site, then 
summarized by the four crop types. This comparison quantifies absolute 
and relative ETc estimation bias. Second, cumulative observed ETc 
values are regressed against modeled values. These regressions sum
marize model performance with R2 and root-mean-square (RMSE) sta
tistics. Third, example daily time-series ETc plots illustrate the time and 
magnitude of model discrepancies. These discrepancies can be localized 
in time, as might occur during pre-emergent periods when vegetation 
index models are expected to be less accurate or globalized and thus an 
indicator of crop coefficient bias error. 

3. Results 

This section presents results in four parts. First, the sensitivity of 
modeled ETc to growth stage delineation is reported for single-harvest 
crops broccoli, cotton, and wheat. Next, the observed NDVI and 
growth patterns are reported for alfalfa, broccoli, cotton, and wheat for 
all Reclamation-verified fields at Yuma. In the third part, a summary of 
modeled ETc results for the 856 Reclamation-verified sites is presented. 
Last, ETc outcomes from the model approaches- provided by the 
Evapotranspiration Report, the Vegetation Index Model, and the 
OpenET SIMS model- are validated against eddy covariance measure
ments at 13 sites. 

3.1. Sensitivity of Modeled ETc to Growth Stage Delineation for Broccoli, 
Cotton, and Wheat 

Using the Evapotranspiration Report Kc curves and 2019 AZMET 
ETos values from Yuma Valley station, the sensitivity of total modeled 

ETc to changes in L and Kc was evaluated for broccoli, cotton, and wheat. 
Alfalfa results are not presented because partitioning effects are less 
important than the effects from under- or over-counting cuttings. In
clusion or exclusion of a single cutting can change ETc by more than 
150 mm, while changes in L INI, DEV, and MID cause smaller differ
ences, 10–40 mm. 

Four L sensitivity tests were conducted, all retaining the nominal 
length of season: one using the coefficients and growth stages from the 
Evapotranspiration report as-is but shifted forward or backward in time 
with respect to its nominal position (DOYshift), and three that varied the 
durations for the INI, MID, and END stages. Results are presented in the 
top row of Fig. 6. Effects from all four sensitivity tests were non-linear 
and seasonally dependent. Changing the start of the growing season 
(DOYshift) had the most significant effect on changes in estimated total 
ET for broccoli and wheat, while changes in L INI were most significant 
for cotton. Twenty-day shifts affected estimated ET for broccoli by 10% 
(25 mm), for cotton ET by 5% (60 mm), and for wheat by 17% 
(100 mm). For summer cotton crops, changes in L INI can be relatively 
more important than DOYshift, which showed that a 20-day deviation 
from nominal (51 days) changes modeled ETc by 6% (70 mm). 

By comparison, sensitivity tests for changes in crop coefficients 
(Fig. 6, bottom row) showed that accurate Kc MID were most important 
for all three crops, while accuracy for Kc INI and Kc DEV were much less 
important for assessing total ETc. A 10% change in Kc MID effected a 
20 mm (7%) change for broccoli. Sensitivity to changes in recommended 
Kc values depends on the crop. For broccoli, Pereira et al. (2018) pro
poses a 5% increase in Kc MID (1.05–1.10), indicating minimal changes 
to ETc. For cotton, similar changes to Kc MID for cotton would be more 
important, where seasonal ETc increases by 60 mm. For wheat a 5% 
increase in Kc MID results in a 30 mm ETc increase. 

Overall results show that accurate delineation of stages is just as 
important as accurate crop coefficients. 

Fig. 6. Sensitivity tests of crop growth stages (top row) and single crop coefficients, Kc (bottom row) for broccoli, cotton, and wheat in 2019.  
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3.2. Crop NDVI and Growth Stage Patterns at Reclamation Verified Sites 

Using Sentinel-2 data from 2020 illustrates the NDVI patterns for 
example crops (gray lines, Fig. 7), and how they correspond to nominal 
Evapotranspiration Report curves (dashed black lines). The NDVI traces 
document the range, variability, and timespan for each crop. For the 
annual crops there is a clear relationship between NDVI and Kc. 

Alfalfa NDVI patterns (Fig. 7, lower right) are complex, where cut
tings occur anytime and do not follow the idealized Evapotranspiration 
Report pattern (dashed black line). Maximal NDVI is ~0.8 for most 
times, except for July-August when it drops to 0.6–0.7. This depression 
likely reflects management practice to reduce summer-time irrigation 
amounts. For some sites the alfalfa crop ends mid-year, as indicated by 
horizontal traces where NDVI values are close to zero. 

Broccoli NDVI patterns (Fig. 7, upper left), show a wide range of 
growing seasons with plantings initiated from mid-September (Day of 
Year 260) through late November (Day of Year 330). The Evapotrans
piration Report Kc curve represents nominal October planting and falls 
within the mid-range of the NDVI traces. Full cover NDVI patterns for 
broccoli, ~0.7, have variable time shapes, with some traces nearly flat 
while others are rounded. This pattern variability makes stage 
discrimination for broccoli more difficult than for other crops. 

Cotton NDVI (Fig. 7, lower left) documents planting from February 
to April, which reveals abrupt increases from 0.2 to 0.7 during crop 
development, while the index is flat-topped during full cover between 
May and August. The NDVI signals drop in early September, indicative 
of end-of-season. This pattern is consistent with common Yuma farm 
practice, where cotton crops must be removed to allow time for pre- 
vegetable season leaching fraction irrigations. However, the Evapo
transpiration Report Kc curve models an atypically longer cotton season. 

Wheat NDVI data (Fig. 7, upper right) shows traces almost perfectly 
horizontal at full cover (NDVI 0.9–0.95), planted during January and 
harvested in a narrow time interval in May, and closely follows Fall 
crops (note preceding times with descending NDVI). The corresponding 
Evapotranspiration Report Kc curve suggests an early December planting 
that is not supported by satellite observations. 

Differences between QUANT based Vegetation Index Model and 
Evapotranspiration Report-specified growth stages for the annual crops 
(broccoli, cotton, wheat) between 2018 and 2020 are shown in Table 9. 
Listed for each are Evapotranspiration Report and Vegetation Index 
Model estimates for day of planting and for the four growth stage 
lengths. The differences in average number of days (Δ) are substantial. 
Changes in all recorded cases commonly exceed one week, and some
times one month. The Vegetation Index Model revises day of planting 
times and, implicitly, times of initial irrigation events, by showing that 
the actual start of season can be earlier or later than specified by the 
Evapotranspiration Report: broccoli plantings are 54 days earlier while 
wheat plantings are later by 34 days. Vegetation Index Model estimates 
of L DEV are reduced for all three crops, with a major reduction of 43 

Fig. 7. NDVI traces for every ground-validated alfalfa, broccoli, cotton, and wheat site grown at Yuma in 2020 (gray). Example traces for each crop are shown in 
solid blue. Nominal Evapotranspiration Report Kc curves are indicated by green lines. Year transition times denoted by dashed vertical lines. 

Table 9 
Evapotranspiration Report and Vegetation Index Model estimated growth stages 
at Yuma, 2018–2020; where: N – number of analyzed sites, ER – Evapotrans
piration Report, VI – Vegetation Index Model, Δ – difference in length of growth 
stages in days between VI and ER.  

Crop N Stages ER (days) VI (days) Δ (days) 

Broccoli 328 DOP 270 216 -54 
L INI 34 40 6 
L DEV 47 41 -6 
L MID 40 47 7 
L END 14 25 11 
L Total 135 153 18 

Cotton 318 DOP 74 80 6 
L INI 49 42 -7 
L DEV 90 47 -43 
L MID 35 47 12 
L END 39 29 -10 
L Total 213 165 -48 

Wheat 700 DOP -30 4 34 
L INI 19 20 1 
L DEV 35 31 -4 
L MID 75 51 -24 
L END 40 23 -17 
L Total 169 125 -44  
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days for cotton. L MID lengths were increased by 7–12 days for broccoli 
and cotton and decreased by 24 days for wheat. Considering all growth 
stages, the Vegetation Index Model revises total season lengths, indi
cating that Evapotranspiration Report estimates are too long by ~6 
weeks for cotton and wheat, and too short by 18 days for broccoli. When 
combined with sensitivity test results (Fig. 6), the estimates provided by 
the Vegetation Index Model indicate that significant updates in modeled 
ETc are needed. 

Considering growth stage for broccoli (Table 9), day of planting 
values generated with the Vegetation Index Model were earlier and total 
L values were greater than the Evapotranspiration Report. For cotton, 
Vegetation Index Model revisions were in the opposite direction, where 
days of planting were later, while L totals were less, than provided by the 
Evapotranspiration Report. Similarly, Vegetation Index Model estimates 
for wheat sites showed days of planting about one month later, and L 
total values less than, Evapotranspiration Report estimates. Growth 
stage results from Vegetation Index Model analyses over alfalfa sites 
(Table 10) were significant: while the number of days between cuttings 
were identical for both models, the average number of cuttings per year 
were 8 for the Vegetation Index Model, in contrast to the Evapotrans
piration Report cuttings number of 9–10. 

Assessment of remote sensing growth stage pattern retrieval with the 
Vegetation Index Model for alfalfa (477 sites, 2018–2020) was also 
done, but using different metrics from the other crops because its stages 
are short and asynchronous. Instead of tracking transitions between INI, 
DEV, MID, and END for each cutting event, the durations between cut
tings and total number of cuttings per year were tracked. 

The first metric considered, duration, is important to estimate 
because the assumption of a constant value- as is done with the 
Evapotranspiration Report- can lead to inaccurately estimated seasonal 
ETc. This is reinforced by the fact that crop management objectives, 
whether nutrient or yield focused (Orloff and Putnam, 2004), drive the 
farm-chosen durations, and these may change from year-to-year. Data 
from 2019 (Fig. 8) illustrates the variability in durations and the general 
trend where they are longer in the winter than the summer. Shown are 
the durations and mean day of year for each cutting, coded by colors. 
The first cutting of the year (red dots) has a mean duration of ~40 days 
and grows between early January to mid-February. Subsequent cutting 
events until summer (orange, light green, medium green, turquoise 
symbols) progressively shorter durations, with a minimum of ~30 days. 
Cutting events in the fall have progressively increasing durations (me
dium blue, dark blue, purple, magenta). The median durations (black 
line) have a similar pattern to data observed at lysimeters in Phoenix 
(personal communication, D. Hunsaker). For cut durations ranging be
tween 20 and 80 days at Yuma, ETc/cut in the summer ranges 
~150–600 mm and ~50–200 mm in the winter. 

Nominal durations from the Evapotranspiration Report for alfalfa are 
60 days for the first and last cuts of a year, and then decrease to 30 days 
for other times (Table 10). Results from the Vegetation Index Model over 
257 Yuma sites show that durations were nearly the same for most 

cutting events, except for the first cut of the year, when the Vegetation 
Index Model observed an average duration of 42 days. 

The second metric considered, the number of cutting events per year, 
is important because the effect of incorrect accounting on seasonal ETc 
can be large, about 10% per mis-counted event. The Vegetation Index 
Model observed an average of 8 cuttings per year, while the Evapo
transpiration report provides more than 9 per year. Analyses from all 
fields also show that alfalfa cutting frequency usually ranged between 5 
and 9 per year (Fig. 9). Fallowed fields are represented by the zero- 
cuttings entry. 

3.3. Vegetation Index Model ETc at Reclamation Verified Sites 

Vegetation Index Model results of ETc over Yuma Reclamation sites 
were compared with those returned by the Evapotranspiration Report. 
Day-to-day patterns of daily ETc use 2020 data (Fig. 10. Red lines 
indicate ETos while green lines denote Evapotranspiration Report ETc. 
Daily Vegetation Index Model ETc (VI, black lines) trace site-mean sea
sonal patterns. Site-to-site variability (blue shading) represents the inter- 
quartile range of Vegetation Index Model estimates of ETc. The plots 
illustrate when and where the Model estimates deviate from the 
Evapotranspiration Report. Noteworthy instances occur for early season 
wheat, late season cotton, and most of the year for alfalfa. Wheat and 
cotton fields are spring to summer crops and show progressive increases 
in ETc until senescence and harvest; site-to-site variability for these two 
crops is low at mid-season. Broccoli, a fall-winter crop, has a nearly flat 
daily ETc profile, with high site-to-site variability for all but the middle 
of the growing season. Alfalfa, a full-year crop, has a daily ETc pattern 
that increases with day length, with periodic decreases throughout the 
year due to cutting events. 

Aggregating ETc by crop, year, and model, showed that differences 
between the Vegetation Index Model and the Evapotranspiration Report 
model were large for broccoli (+0.21), wheat (− 0.25), and alfalfa 
(− 0.23), but modest for cotton (− 0.06) (Table 11). Total Vegetation 
Index Model ETc estimates for broccoli are greater than Evapotranspi
ration Report by 51–80 mm per year. Vegetation Index Model estimates 
for cotton are less than Evapotranspiration Report, ranging 30–109 mm 
per year. Vegetation Index Model results for wheat show that it esti
mates lower water use than provided by the Evapotranspiration Report- 
reductions range between 93 and 286 mm. Still larger modeling differ
ences occur for alfalfa (388 and 479 mm), where the Vegetation Index 
Model returns an average 1478 mm vs. ~1900 mm for the Evapo
transpiration Report. These differences are mainly due to corresponding 
differences in accounting for cutting events. The Vegetation Index Model 
usually observed 7–10 cuttings annually, while the Evapotranspiration 
Report specifies 10 for all locations and times (Fig. 9). 

3.4. Validation of vegetation index model growth stages and actual crop 
evapotranspiration at eddy covariance sites 

Using NDVI data from Sentinel-2, and ETc_act results from eddy 
covariance observations at 13 sites (Table 8), allows evaluation of 
Vegetation Index Model accuracy for tracking crop growth stages and for 
estimating ETc. 

Day of planting values obtained from the Vegetation Index Model 
and eddy covariance data were compared for the single-season crops- 
broccoli, cotton, and wheat. Day of planting accuracy when using the 
early-season NDVI minimum varied widely (Table 12), where estimates 
ranged from 19 days too early for broccoli and 30 days too late for 
cotton. When using FAO-56 INI durations, the estimation errors were 
less, ranging between 10 days too early for cotton to 9 days too late for 
cotton and broccoli. These smaller differences when using FAO-56 led to 
the previously noted use of a ± 10 day window as a constraint for the 
Vegetation Index Model. 

The impact of the adoption of a day of planting model constrained by 
FAO-56 time windows can be assessed using Reclamation-verified sites 

Table 10 
Cutting durations at Yuma for Reclamation-verified sites 2018–2020. Variability 
is estimated by median absolute deviation (MAD).  

Cutting Duration (days) 

Evapotranspiration Report Vegetation Index Model (MAD) 

1 61 (30 previous year) 42 (11) 
2 60 33 (7) 
3 30 31 (5) 
4 30 31 (5) 
5 31 32 (5) 
6 30 32 (5) 
7 31 34 (9) 
8 31 35 (7) 
9 61 34 (4) 
10 30 30 (5)  
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where the actual day of planting is not known (Table 13). Listed are the 
fractions of sites where use of an early-season NDVI minimum falls 
within the FAO-56 window. These fractions range widely, between 0.35 
and 0.82, which means that NDVI minima are informative but are often 
inaccurate. 

For the continuous crop, alfalfa, growth stage accuracy was assessed 
by comparing modeled vs. observed days of cutting (Table 14). Eddy 
covariance identifications were based on evaluating when daily ET 
abruptly decreased, while Vegetation Index Model identifications used 
outcomes from the partitioning of NDVI (Fig. 5). The Model accurately 
tracked all cutting events at the three validation sites. Average days-of- 
detection derived by the Model were different from eddy covariance 
observations by 2 days or less. 

Validation tests of Vegetation Index Model ETc are summarized in  

Table 15. Shown are crop types, site names, eddy covariance deploy
ment/removal dates, and total season eddy covariance-measured ETc_act. 
The last three columns in the table list modeled total ETc from the 
Evapotranspiration Report (ER), the Vegetation Index Model (VI), and 
SIMS. Reporting of SIMS values were obtained from the openetdata.org 
online tool and checked locally following methods described in Melton 
et al. (2012), Pereira et al. (2020), and “The Satellite Irrigation Man
agement Support (SIMS) System User Documentation”, 2018–2021 
(available online from openetdata.org/methodologies/). 

To demonstrate that the eddy covariance-based ETc_act data were 
reasonable, energy balance closure errors were computed and total 
ETc_act values were compared with literature-reported values. They were 
generally consistent with other observations. Average closure at daily 
time steps was 0.82 or better. For broccoli, eddy covariance 

Fig. 8. Remotely sensed cutting durations vs. day of year for alfalfa grown in Yuma, 2020. Unique colors represent for every field the duration and mean day of year 
for a specific cutting interval. Intervals 1–9 are plotted as red, orange, light green, medium green, turquoise, medium blue, dark blue, purple, and magenta. For 
example, a red dot denotes the duration and mean day of year for the first cutting event of a single field in 2018, and an orange dot denotes the same for the second 
cutting event. The black line and the number at each vertex denote the median duration and day of year for each cutting event. Experimental data from the lysimeter 
studies at the U.S. Water Conservation Laboratory, USDA/ARS, Phoenix, AZ are shown as a gray line. 

Fig. 9. Number of annual alfalfa cuttings at Yuma for 2018–2020 as resolved by the Vegetation Index Model.  

A.N. French et al.                                                                                                                                                                                                                               



Agricultural Water Management 290 (2023) 108582

13

measurements returned an average of 271 mm, compared to 359 mm 
(post-transplanting, Lopez-Urrea et al., 2009), 220 mm (lysimeter re
sults, Bryla et al., 2010), and > 203 mm (Johnson and Trout, 2012). For 
cotton, average eddy covariance-based total ETc_act was 935 mm, 
compared to 918–1033 mm for a Maricopa, Arizona study (French et al., 
2015). For wheat, average eddy covariance-based ETc_act was 590 mm, 
while 478 mm was reported for Maricopa studies (Hunsaker et al., 
2005). Eddy covariance-based ETc_act for three alfalfa sites were 
1473 mm (YMIDD21–22b1, 301 days), 1149 mm (YMIDD21–22b,220 

Fig. 10. Daily modeled ETc for all Yuma instances for four crops in 2020. Shown for each are mean Vegetation Index Model ETc (VI, black), Evapotranspiration 
Report ETc (ER, green), and grass reference ET (ETos, red). The envelope of results from all fields (blue shading), represents the site-to-site variability of daily ETc. 

Table 11 
Total median crop ETc for all ground-validated broccoli, cotton, wheat, and al
falfa sites, 2018–2020, as estimated by the Evapotranspiration Report and by the 
Vegetation Index Model. ETc variability estimated by the Vegetation Index 
Model, as represented by median absolute deviation (MAD), is listed in paren
theses, Δ – difference in total median ETc between Vegetation Index Model and 
Evaporation Report, Rel. Δ – direction and fraction of change in the recorded Δ.  

Crop Year ETc (mm) 

Evapotranspiration 
Report 

Vegetation 
Index Model 
(MAD) 

Δ Rel. 
Δ 

Alfalfa 2018 1918 1439 (115) -479 -0.25 
2019 1888 1500 (75) -388 -0.21 
2020 1944 1496 (77) -448 -0.23 
Average 1917 1478 (89) -438 -0.23 

Broccoli 2018 308 359 (76) 51 0.17 
2019 325 405 (62) 80 0.25 
2020 345 417 (51) 72 0.21 
Average 326 394 (63) 68 0.21 

Cotton 2018 1128 1047 (120) -81 -0.07 
2019 1143 1113 (116) -30 -0.03 
2020 1181 1072 (89) -109 -0.09 
Average 1151 1077 (108) -73 -0.06 

Wheat 2018 726 440 (61) -286 -0.39 
2019 680 541 (54) -139 -0.20 
2020 649 556 (90) -93 -0.14 
Average 685 512 (69) -173 -0.25  

Table 12 
Day of planting estimation error at eddy covariance sites. Listed for each site are 
actual day of planting, its estimated value from NDVI minima, from FAO-56 INI 
values, and their corresponding errors.  

Crop Site Day of Planting 

Actual NDVI Min FAO-56 NDVI Error FAO-56 Error 

Broccoli BWD19c 238 219 233 -19 -6 
WMIDD19 342 342 343 0 1 
BWD18b 228 215 237 -13 9 
BWD20–21 250 235 259 -15 9 

Wheat YID18c 11 11 3 0 -8 
YID18b 11 11 6 0 -5 
YID18a 354 354 353 0 -1 

Cotton BWD19b 64 87 66 23 2 
BWD20b 86 89 76 3 -10 
BWD21a 68 98 77 30 9  

Table 13 
Evaluation of the efficacy of NDVI minima to select day of plantings at Yuma 
Reclamation-verified sites. Listed of the fraction of cases where the day of year at 
NDVI minima lie within the FAO-56 time selection window.  

Crop Year Fraction Inside 

Broccoli 2018 0.42 
2019 0.41 
2020 0.41 

Wheat 2018 0.76 
2019 0.77 
2020 0.61 

Cotton 2018 0.82 
2019 0.35 
2020 0.53 

Average  0.56  
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days), and 1809 mm (YMIDD21–22c, 376 days). These were consistent 
for the first and third sites: model estimates using the IAS model (Snyder 
and Bali, 2008), returned 1443 mm, and 1922 mm respectively. In
consistencies between EC and modeled values at YMIDD21–22b could 
not be explained. The eddy covariance data were checked and adjusted 
for closure errors and flux footprint outliers and are considered 
representative. 

Having established reasonableness for the eddy covariance data, the 
resulting total ETc_act measurements were compared with the model 
estimates to assess estimation bias by the Evapotranspiration Report, 

Vegetation Index, and SIMS models (Table 15). For alfalfa, model dif
ferences were 23 mm (2%), 12 mm (1%), and − 116 mm (− 8%). For 
broccoli, differences were − 10 mm (− 4%), 14 mm (− 5%), and 
− 72 mm (− 27%). For cotton, differences were 152 mm (16%), 78 mm 
(8%), and − 75 mm (− 8%). For wheat, average model differences were 
− 45 mm ( − 7%), − 87 mm (− 14%), and − 108 mm (− 17%). Consid
ering all sites together, showed that the Vegetation Index model had the 
lowest average bias, − 4 mm, the Evapotranspiration Report had the 
next lowest bias of 27 mm, and then SIMS with an average bias of 
− 91 mm. 

Table 14 
Comparison of Vegetation Index Model (VI) vs. eddy covariance (EC) observations of alfalfa cutting events. For each cutting, the first value indicates the observed day 
of year from the Vegetation Index Model and the second indicates the day of year estimate from EC data.  

Site Cutting (VI / EC) 

1 2 3 4 5 6 7 8 9 10 

YMIDD21–22b1 138/137 170/165 194/195 229/225 256/258 287/288 320/320 26/20 82/80 - 
YMIDD21–22b 85/82 107/106 142/141 168/169 200/196 233/231 268/270 307/310 335/337 - 
YMIDD21–22c 158/162 185/183 214/211 241/240 272/269 299/295 327/329 22/16 77/73 127/123  

Table 15 
Crop validation sites at Yuma, 2016–2022. Eddy covariance quality at each site is summarized by energy balance closure analysis, where regression results from 
comparing eddy covariance advective to radiative daily energy fluxes are reported by slope (b1) and R2. Listed are total season ETc_act from eddy covariance mea
surements (EC), followed by modeled ETc: Evapotranspiration Report (ER), Vegetation Index Model (VI), and SIMS.  

Crop Site Deployment Days b1 R2 ETc_act ETc 

EC ER VI SIMS 

Alfalfa YMIDD21–22b1 301 0.77 0.88 1473 1409 1332 1229 
YMIDD21–22b 220 0.83 0.98 1149 1300 1364 1241 
YMIDD21–22c 376 0.86 0.97 1809 1792 1770 1612 
Average 299 0.82 0.85 1477 1500 1489 13611 
Difference     23 12 -116 

Broccoli BWD19c 84 0.86 0.84 211 287 228 215 
WMIDD18–19 122 0.86 0.88 310 223 233 189 
BWD18b 59 0.81 0.84 275 272 313 161 
BWD20–21 105 0.84 0.84 289 261 252 230 
Average 93 0.84 0.85 271 261 257 199 
Difference     -10 -14 -72 

Cotton BWD19b 191 0.91 0.95 851 1093 1094 904 
BWD20b 157 0.81 0.96 990 1127 947 835 
BWD21a 193 0.90 0.96 963 1040 996 841 
Average 180 0.87 0.96 935 1087 1012 860 
Difference     152 78 -75 

Wheat YID18a 166 0.81 0.96 652 596 553 536 
YID18b 144 0.96 0.94 588 596 553 534 
YID18c 147 0.93 0.88 684 596 556 529 
Average 152 0.90 0.93 641 596 554 533 
Difference     -45 -87 -108  

Fig. 11. Validation results from comparisons of eddy covariance total ETc_act mm (EC ET) for four crops: alfalfa (red), broccoli (green), cotton (blue), wheat (purple). 
Presented are three ET models: Evapotranspiration Report (ER), Vegetation Index Model (VI), and SIMS. Linear regression models are blue, the one-to-one line is 
plotted in dotted black. 
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Next, the models were assessed by aggregating results from all four 
crops and comparing seasonal ETc with eddy covariance observations 
(Fig. 11). Shown are regression results for each model and the one-to- 
one line (dashed). All linear models have high accuracy with R2 

0.95–0.96 (Table 16). However, the Vegetation Index performs better 
than the Evapotranspiration Report and the SIMS model at ETc values 
less than 1000 mm as shown by the small (− 4.8) zero-offset term. 

Lastly, the validation using ETc daily time series (Fig. 12) highlight 
reasons for ETc modeling inaccuracies. One lies with the Evapotranspi
ration Report’s wheat growth stages in comparison with satellite derived 
stages. When viewing daily ETc_act patterns, the Vegetation Index Model 
and SIMS accurately track eddy covariance measurements for most of 
the cropping season, but the Evapotranspiration Report erroneously 
initiates growth prematurely (day of year 360–25 in the new year) and 
consequently over-estimates early season ETc. Because all three models 
under-estimate bare soil evaporation, the apparent superiority of the 
Evapotranspiration Report for seasonal wheat water use is illusory: es
timates of high early season ETc result from prematurely advancing INI, 
DEV, and MID growth stages. A second reason for model inaccuracy, and 
one that applies to all three models, is their poor estimation of INI-stage 
evaporation. The early season errors, significant for broccoli (day of year 
250–325) and cotton (day of year 50–110), are visually apparent 
(Fig. 12) by the large differences between observed ETc_act (eddy 
covariance, EC, black lines) and modeled ETc via ER, SIMS, and VI 
(respectively, green, blue, orange lines). 

4. Discussion 

This study’s objectives were to develop, test, and validate the capa
bility of the Vegetation Index Model to extend and improve the existing 
Evapotranspiration Report methodology for quantifying ETc. A related 
goal was to consider ETc results against a competitive model, SIMS. 
Development, testing, and validation were possible because of the 
availability of three components: validated crop type maps, frequent 
high resolution satellite data, and software to process the image data. 

The wealth of accurate crop cover type maps made possible the 
matching of NDVI data to hundreds of field sites. These Reclamation- 
supplied maps provided field-level crop type verification that were 
assembled from in-person surveys conducted quarterly and made 
available for a 3-year period. In contrast, studies validating Kc values 
have relatively few sites. For example, Lopez et al. (2009) evaluated 7 
irrigation levels for one year of broccoli. For cotton, Anapalli et al. 
(2020) evaluated one 250 ha field over two years, Hunsaker and Bron
son (2021) evaluated 8 fields over three years, and Ko et al. (2009) 
evaluated 6 fields over two years. Wheat Kc values were studied on six 
fields for 2005–2008 by Ko et al. (2009), and four fields for two years 
(Hunsaker et al., 2005). For alfalfa, Hu et al. (2020) had treatments in 
2018–2019, Benli et al. (2006) investigated one field for three years., 
and three sites in 1985 were evaluated by (Hunsaker et al., 2002). 

Availability of Sentinel-2 satellite data enabled fine temporal scale 
detection of crop growth changes. Prior to this mission, lower resolution, 
multispectral data from sensors such as Landsat were available no more 
frequently than 14 days, and less often with cloudy skies. Deployment of 
the Sentinel-2 satellite pair has enabled 3- to 5-day observation in
tervals, providing a capability with worldwide ramifications (Li and 
Roy, 2017), and facilitated by favorable Yuma weather. High revisit 
frequencies were especially helpful for alfalfa due to frequent harvesting 

cycles. 
An outstanding component was the computational processing tool 

provided by Google Earth Engine. Without it, the comprehensive 
collection, filtering, and reduction of satellite based NDVI would have 
been slow. Google Earth Engine enabled hundreds of Sentinel-2 images 
to be combined with crop maps to produce vegetation index time series 
tables in a few minutes. The high processing speeds mean that annual 
analyses would be practical for all Lower Colorado irrigation districts. 

A quantitative threshold-based methodology, QUANT, was devel
oped and incorporated into the Vegetation Index Model to potentially 
assist with the Evapotranspiration Report’s inability to account for 
current and future cropping practices. QUANT has similarities to other 
phenological tracking approaches (e.g., Jonsson and Eklundh, 2002, 
Cong et al., 2012), but differs from them by its use of cloud-processing 
and constraints specific to transforming NDVI into the four FAO-56 
growth stages. With the Evapotranspiration Report, all fields of the 
same crop type in a particular irrigation district and year are modeled in 
the same way- identical growth stages and Kc values are used, resulting 
in unrealistically uniform ETc estimates. With the Vegetation Index 
Model, every field is modeled individually using NDVI-derived growth 
stages. The resulting availability of remotely sensed ETc makes it 
possible to evaluate water use every year for all Lower Colorado River 
irrigation districts. Using crop classification maps and surface weather 
data, the Model could be readily extended to other irrigation districts. 

Testing of the Vegetation Index Model showed that growth stages 
and ETc values were substantially different from the Evapotranspiration 
Report (Jensen, 2003), often exceeding 25%. Additionally, the Vegeta
tion Index Model quantified the very important variability of ETc be
tween fields, values not estimated by the Evapotranspiration Report. 
Two kinds of tests were performed: one evaluated the effect of growth 
stage beginnings and durations on ETc over Reclamation-verified sites, 
and the second established relationships between ETc and growth stage 
variability by conducting sensitivity analyses. 

Using remote sensing, comparison tests between models over 856 
Reclamation-verified fields- for the period 2018–2020, for alfalfa, 
broccoli, cotton, and wheat- showed that changes in estimated total ETc 
values were considerable (Table 10). Vegetation Index Model-derived 
ETc values were increased by more than 20% for broccoli and 
decreased by more than 20% for wheat and alfalfa. Absolute ETc dif
ferences for wheat and alfalfa were large, where seasonal differences 
exceeded 100 mm and 400 mm respectively. Total ETc difference for 
cotton was less, ~6%, because the effect of the Vegetation Index Model’s 
relatively shorter growing season was offset by a shift of peak growth to 
days with high ETos. 

Sensitivity analysis testing of the Vegetation Index Model for fields 
planted in 2019 (section: 3.1) supported assessments shown in Figs. 7 
and 13: large growth stage variability occurs within irrigation districts. 
Because of its use of static Kc curves, the Evapotranspiration Report 
cannot resolve these ETc variabilities. Adoption of the Vegetation Index 
Model would reduce ETc estimation bias. For the single-harvest crops, 
broccoli, cotton, and wheat, the analyses showed which growth stages 
were most important for ETc mapping. In most instances, accurate day of 
planting was most important, where plausible revisions of 20 days or 
more can lead to seasonal ETc changes of 25 mm, 60 mm, and 100 mm 
for broccoli, cotton, and wheat. L INI and L MID were important for 
broccoli and cotton, while L MID and L END were important for wheat. 
Crop coefficient uncertainty can be important too, however, sensitivity 
analyses for Yuma suggest that updates to these are less influential. 
Updates to Kc INI and Kc MID are 5% or less (e.g., vegetable crops, 
Pereira et al., 2018), meaning that corresponding updates to seasonal 
ETc values would be ~8 mm, 52 mm, and 34 mm, for broccoli, cotton, 
and wheat respectively. For multiple-harvested alfalfa, ETc is about 
200 mm per cutting interval and constitutes about 10% of seasonal ETc. 
Thus, the number of such periods is the most important growth metric to 
track for alfalfa. Duration of each interval is less important: revision of 
durations by 10 days would change ETc by ~50 mm, ¼ of the effect 

Table 16 
ETc model regression results for validation assessments of the Evapotranspira
tion Report (ER), the Vegetation Index Model (VI), and SIMS.  

Model b0 b1 R2 RMSE (mm) 

ER 75.4 0.91 0.95 117.7 
VI -4.8 0.99 0.96 111.5 
SIMS 72.6 1.13 0.96 103.1  
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realized by miscounting of events. 
Validation of the Vegetation Index Model showed that the approach 

is accurate for alfalfa, broccoli, cotton, and wheat. Using eddy covari
ance data collected at 13 Yuma sites showed high estimation accuracy, 

R2 = 0.95 and RMSE of 99 mm, supporting adoption of the NDVI-driven 
growth stage partitioning approach. Total ETc values for Vegetation 
Index Model-derived alfalfa, broccoli, and cotton differed from eddy 
covariance measurements by less than 8%. Model estimates for wheat 

Fig. 12. Comparison of observed ETc_act (EC) vs. modeled daily ETc for example broccoli, wheat, cotton, and alfalfa sites. Results are shown for the Evapotrans
piration Report (ER, green), SIMS (blue), and the Vegetation Index Model (VI, red). 

Fig. 13. Modeled crop coefficient curve comparisons over Reclamation fields for broccoli, wheat, cotton, and alfalfa using the Evapotranspiration Report (Kc ER, 
green), and Vegetation Index Model (Kc VI, gray). Alfalfa curves are omitted for clarity. Kc values corresponding to the eddy covariance validation sites (Table 8, 
2018–2020) are shown in red. For clarity, only one alfalfa site (WMIDD21–22b) is shown. Vertical line denotes January 1. 
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differed by a greater amount, 14%. OpenET-based SIMS estimates for 
wheat differed by 17%, which suggests that its additional model 
complexity (e.g., its use of the density factor, Kcd) does not result in 
superior ETc estimates. The inability to resolve early-stage evaporation 
by these models was important for cotton and broccoli, but inconse
quential for alfalfa and wheat (Fig. 12), suggesting that bare soil dura
tions for these latter crops are brief. 

Eddy covariance data also showed high ETc accuracy for the 
Evapotranspiration Report approach (Fig. 11, R2 = 0.95). This positive 
outcome, however, should be considered alongside observations that 
show its inability to discriminate ETc variability within irrigation dis
tricts. Consolidated displays of Kc values for the four crops (Fig. 13), 
show that the field-to-field variability in growth stages (gray lines) is 
wide in time, on the order of 50 days. The 13 validation sites (red lines) 
sampled those differences for alfalfa, broccoli, and wheat, and less 
satisfactorily for cotton. With an exception for broccoli, Evapotranspi
ration Report Kc curves (heavy black lines) are biased relative to actual 
planting practices and as presented in Table 7. 

5. Conclusion 

Tracking of daily crop growth and evapotranspiration within water 
districts is important for assessments of ETc within irrigated lands of the 
Lower Colorado River Basin. A satellite-based vegetation index model 
that accomplishes these tasks was developed, tested, and validated using 
remotely sensed Sentinel-2 NDVI data, Reclamation crop maps, local 
weather, and Google Earth Engine resources. The approach, ‘Vegetation 
Index Model’, constructs FAO-56 style crop growth stages from NDVI, 
and then estimates ETc. The aim is to improve and extend the method
ology provided by the Evapotranspiration Report. Four crops, broccoli, 
cotton, wheat, and alfalfa- selected to represent short, middle and 
perennial seasons- were evaluated two ways: first by comparing models 
using Reclamation-verified field locations; and second, by validating 
models using ETc_act obtained from 13 eddy covariance sites. In the first 
way, ETc results from the Evapotranspiration report overestimated al
falfa and wheat by 21–25%, overestimated cotton by 6%, and under
estimated broccoli ETc by 21%. The Vegetation Index Model showed ETc 
variability ranged 6–18% of median total ETc. In the second way, ETc 
results showed discrepancies ranging 1–14%, indicating that Vegetation 
Index Model results were valid. Results also indicated that the Vegeta
tion Index Model is more representative of field-scale ETc than values 
provided by either the Evapotranspiration Report or by SIMS. By using 
remote sensing to adaptively estimate ETc for every field, ETc estimation 
bias can be reduced, and field-to-field variability quantified. 

Results from the study show that revision of crop growth stages can 
be practical with available satellite data and software tools. Extension of 
the Vegetation Index Model to other irrigation districts can be direct if 
accurate weather data and crop maps are available. The Model would be 
more difficult to apply for locales with predominantly cloudy skies. The 
crop growth mapping approach can be aggregated to district-wide av
erages, and it is well suited for field-by-field applications. This latter 
option would be especially helpful for meeting Reclamation’s obliga
tions to provide accurate annual assessments. 

Future work is needed to evaluate growth stages and ETc for crops 
not evaluated in this study, including lettuce, citrus, dates, and Bermuda 
grass. Also needed will be comparisons between the Vegetation Index 
Model and surface energy balance models, as provided by the OpenET 
Project (Volk et al., 2021; Volk et al., 2023). These comparisons will help 
resolve which ET mapping approaches- vegetation index, surface energy 
balance, or some combination of them- are most practical, accurate, and 
cost-effective. One avenue for further model improvement could lie with 
the use of active radar remote sensing data, as provided by Sentinel-1 
and by the upcoming NISAR mission (nisar.jpl.nasa.gov). These sen
sors can discriminate cropped from non-cropped areas, detect early 
season irrigation events (e.g., Bazzi et al., 2022) and are unaffected by 
cloud cover, all attributes that would improve modeling of ETc 

immediately following planting and help extend use of the Vegetation 
Index Model into more humid climates. 
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